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ABSTRACT
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length: the lnnger the test, the more similar the distributions. On
the other hand, siamilaryty varies inversely with saople size! the
larjer the sanmple, the more dissimilar tte distributions. For both SI
and SD itea sfets, the expected value of KR-21 is less than or equal
to that of KR-20 which 1s less than or egual to the expected value of
S-H, Also, for both item sets, the standard ecrror of S-H is yreater
than that of XKR~21 which is greater than or equal o the standarcd
error of KR-20., The standird errors of the turece reliability
estimates vary inversaly wvith sample size and test ieungth, for hoth
SI and SD items. In every case, SD increased the expectea value of
the estimate and decreased its standard ecror. (Authou/Al)
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INTRODUCTION

The general purpose of this study was to investigate the effects of
sequential dependence (SD) on the sampling distributions of three commonly
used reliability estimates -~ Kuder-Richardson Formula 20 (kR20), Kuder-
Richarxdson Formula 21 (KP21), and odd~even Split-Halves (S-H).

Two items are sequentially indeperdent (SI) if and only if the

success or nonsuccess on one does not affect the probability of success
on the other. Symbolically, if Sy represents success on item i angd Si
indicates failure, items { and j are scquentially independent i{f and only
1f P(Sg | §y) = P(51) and P(Sy | 35) = P(54).

Two items are sequentially dependent (SD) if and only if the success

or nonsuccess on one affects the probability of success on the other.
Symbolically, items i and j sre sequentially dependent if and only if
P(Sy | S4) # P(S1) and P(Sy | Sy) # P(s).

Iu practice, 1t 1s often the case that achievement tests contain two
or more items that are SD. The most obvious instance of SD is given by a
pair of items, one of which refers to the other and the solution of the
one is strictly contingent upon solution of the other. Frequently,
however, the sequential dependence between items is more subtle than in
this extreme case. Since SD does occur in practice and since the
classical reliability cstimates are often applied to these SU tests, it
{3 important to investigate the effects of SD on the sampling distri-
butions of tre three commonly used estimates.

In the present study, computational forms of KR20 and KR21 (Kuder



and Richardson, 1937) were used, and the S-H coefficients were abtained
by applying the Spearmau-Brown (Spearman, 1910; Brown, 1910) formula to
the Pearson correlation between thie scores made on the odd and even item

sets.
METHODOLOGY

The following sampling parameters were used:
Test Lenpth Tests containing 20, 30 and 50 items.
Sample Size Sample sizes of 20, 32, and 52.

Item Difficulty Distribution Four different distributions of item diffi-

culty were used. Three of these distributions were constant difticulties
of .3, .5, and .7} and the fourth was an equally-spaced rectangular
distribution of the following form:

Let £ = 1, 2, 3,em,k be the item index over the k items.

The difficulty for item 1 is E%I .
1. k
In this distribution, the items range in difficulty from s} to s i

True Score Distributioh. For each of the four item difficulty distri-

butions, a symmetric unimodal distribution of true scores was forced in
the following way:

Let Dy be the difficulty of item i, and m)g, my; and

m3, be selected so that:

D; = myg (.25) Dy + my, (.50) Dy + m3; (.25) Dy .

In this notation, the subscript s is an index over the

n subjects, and the following relationships hold among

the weights:



my = m) 9 ™ L. ® mld , where d = nf4

M2 (d+1) ™ B2(d+2) = +»+ 7 B2(34~1)

m3(3d) * 0I(Id+1) * M3y
These conditions on the weights (mj, my, m3) give a three-point distri-
bution of true scores for each parameter combtination. The particular

weights used in the study are presented in Table 1.
TABLE 1

WEIGHTS USED TO FORM TRUE SCORE DISTRIBUTION

Difficulty bistribution Eli EZE Ezi
Rectanguler ] 1.0 1.5
Constant .3 ] 1.0 1.5
Constant .5 +5 1.0 1.5
Constant .7 o7 1.0 1.3

From the preceding discussion, the probability of subfect £ correctly
answering item 1 18 mjg Dy 4f 1 < 8 < n/4, mpg Dy if n/4 < s < 3n/4, and
m3g Mg if 3n/4 < 8 < n, In this discussion the probability of success on
an item does not depend on performance on prior items, but only on the
relative position of the subject's true score. Thus, the items which
comprise ti.: subject's teat score are Sl.

SD among items was induced by changing the probability of success on

a given item zccording to the subjects performance on the immediately

Q preceding item. Performance on item 1 is unaffected by 5D,

E119
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In the case of the equally-spaced rectangular distribution of item
difficulties, P(Sy) = EéT . The following dependence probabilities were

used:

P(Sy | 84-9) = it

'y e Galyie(2-1)
P(Sy | S1-1) = (1) Geo172)

If D is the constant diffi ulty for each of the three constaunt item

difficulty distributions, the dependence probabilities are:
PS5y | §q-1) = Dhel
PG5y | sio) = RESDECL)

It may be easily shown that these dependence probabilities satisfy

the following necessary condition:

np(1) = n-P(S3) = np(s-1) * P(Sy | 84.9) +

Ny (1-1) * P(Sy | S4-1) »
vheare Ry (1) 1B the number correctly answering item i, n i. eample size,
ny(4-1) 18 the number correctly answering item i-1, and nw(i_l).is the
number incorrectly answering item i-1.

The procedures of the study required genceration of nine sequences of
pseudo-randon numbers in the interval (0, 1). The sequences ranged from
200,000 to 1,300,000 in length, The multiplicative cgvgruence method
(Lehmer, 1951) was employed, using Pike and Hill's (1965) algorithm, to
generate the sequences.,

Subject x Item response matrices were generated in an element-wise
manner by comparing ths probability of success on each ften by each

subject with a pseudo-raudom number. The matrices were generated in
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pairs -- one matrix containing SI items ond the other contaiuning SD {tems.
The same random number was used for comparison in each matrix for a
given position,

Let XI be ths n X k matrix of responses for the SI items and XD be
the n x k matrix of responses for the SD items. Also, let XIgqy and XDy
denote elements of these response matrices. Then, using Rgy for the
random number associated with position si, and Sgy for success on item
i by subject s, the matrices were generated in the following way:

If Rgy < P(Sgq), then Xlgy =1

If Rsi 2> P(Sgy), then XIgy = O

If Rgy < P(Sgq | Sy 1)» then XDgq = 1; otherwise Xbgy = 0

If Ry > P(Sgq | s;i-l)' then XDggy = 0; otherwise XDgy =1
RESULTS AND CONCLUSIONS

These Monte Carlo experiments were conducted on an IBM 7094 computer
using 8 Fortran Program written by the researcher (copies of the program
are available upon request). Five-hundred dichotomously shored response
patterns were generated with SI items and 500 with SD items for each of
the thirty~six combinations of sampling parameters (i.e., three test
lengths, three sample sizes, and four ftem difficulty distributions).
KR20, KR21, and S-H were computed for each of these 36,000 response
matrices and their cumulative distribution functions, each based on 500
trials, compiled,

The Kolmogorov-Smirnov two-sample procedure (Siegel, 1956) was used
to compare the sampling distributions of the three estimates under SI and

S8D. Kolmogorov-Smirnov D values were obtained by computing the absolute



value of the maximum vertical distance batwcen the cumulative distri-
bution functions. Considering all parameter combinations, the mean
absolute D values for the three estimates were:

KR20 KR21 S-H

.307 . 303 .333
Since Kolmogorov-Smirnov D values vary inversely with distribution
similarity, it may be concluded that there is more similarity between the
SI and SD cumulative distribution functions for KR21 than KR20, and
either of these have uore similarity than S-H.

Mean absolute D values were also computed for the SI and SD
cumulative distribution functions under the various sampling conditicns.
These means are presented in Table 2.

For KR20, KR21l, and S-H, the similarity of their sawpling distri-
butions under 51 and SD varies directly with test length, i.e., the
longer the test, the more similar are the sampling distributions. On the
other haand, the similarity of the sampling distributions of the three
estimates under SI and SD varies inversely with sample size, {.e., the
larger the sample size, the more dissimilar are the sampling distritutions.
The different item difffculty dJdistributions effect different degrees of
similarity between SI and SD distributions. For both KR20 and KR21, the
order of sirilarity of the sampling distributions under SI and SD 1is:
constant .3, equally-spaced rectangular, conetant .5, and constant ,7,
For S-H, the order is: equally-spsced rectangular, constant .3, constant
+5, and constant ,7,

For both SI and SD item sets, the expected value of KR21 is less than

or equal to that of KR20 which is less than or equal to the expected value



TABLE 2

MEAN KOiMOGOROV-SMIRNOV ABSCLUTE D VALUES
UNDFR THE VARIOUS MONTE CARLO CONDITIONS

Difficulty bistribution XR20 KR21 S-H

Ractangular .238 .229 274
Constant .S .385 +350 .378
Constant .3 .196 .204 285
(onstant .7 .408 427 .397
Test Lergth 20 KR21 S-RH
20 422 427 463

30 .309 + 296 333

50 . 190 . 185 +205
Sample Size KR 0 KR21 S-d
20 261 .265 274

32 .297 .303 . 329

52 . 364 .339 . 397

of S-H. Alsoy fer both SI and SD item sets, the standard error of S-H is
greater than that of KR21 which is greater than or equal to the standard
error of KR20. The standacd ;rror of cach of the three reliability
estimates varies inversely with sample size and test length, for both SI
and SD ftems. In every case, SD increased the expected value of the

estimate and decreased its standard error.
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